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I. INTRODUCTION 

The invisible axion is one of the best motivated candidates for cosmic dark matter. 

The axion is the pseudo-Nambu~Goldstone boson resulting from t.he spontaneous break- 

ing of a u( 1) global symmetry known as the Peccei-Quinn, or PQ, symmetry. The PQ 

symmetry is introduced to explain the apparent smallness of strong CP-violation in QCD 

[l]. Although there are other possible solutions to the strong CP problem [2], and the 

origin of the axion in the breaking of a global symmetry has been criticized [3], the axion 

remains the best known cure for the disease of strong-CP violation. 

There are stringent astrophysical [4,5] and cosmological [6] constraints on the prop- 

erties of the axion. In particular, the combination of cosmological and astrophysical 

considerations restrict the axion decay constant f” and the axion mass m, to be in the 

narrow windows 10” GeV 5 f,, 5 10” GeV, and 10m5eV 5 m, 2 10m3eV [7]. The 

contribution to the mean density of the Universe from axions with mass in this win- 

dow is guaranteed to be cosmologically significant. Thus, if axions exist, they will be 

dynamically important in the present evolution of the Universe. 

In addition to the usual role in the evolution of primordial density fluctuations and 

the formation of large-scale structure common to all cold dark matter candidates, ax- 

ions have unique features as dark matter. The energy density in axions corresponds 

to coherent scalar field oscillations, driven by a displacement of the initial value of the 

field (the “misalignment” angle) away from the eventual minimum of the temperature- 

dependent potential. During the QCD epoch fluctuations in the misalignment angle on 

scales comparable to the Hubble radius at that time [8] are transformed into large ampli- 

tude density fluctuations, which later lead to tiny gravitationally bound “miniclusters” 

[9]. It was found that the density in miniclusters exceeds by ten orders of magnitude the 

local dark matter density in the Solar neighborhood [9]. This might have a number of 
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astrophysical consequences: as well as implications for laboratory asion searches [lo]. 

In previous studies of the evolut,ion of the axion field around the QCD epoch, the 

effect of spatial gradients of the axion field were either neglect,ed, or were included in a 

limit where the non-linear potential was approximated by a linear harmonic potential. 

Both approximations are adequate for temperatures well below the QCD scale where 

the coherent axion oscillations can be treated as pressureless, cold dust. However, in a 

previous paper [ll] we found that just at the crucial time when the inverse mass of the 

axion is approximately the size of the Hubble radius and fluctuations of misalignment 

angle are still of order x, both the non-linear interaction and the gradient terms are 

important, and a full field-theoretical calculation is needed. Here, we present the results 

of a 3-dimensional numerical study of the evolution of the inhomogeneous axion field 

around the QCD epoch. We find that the resulting axion clumps are much denser than 

previously thought, even rea,ching the critical conditions for Bose star formation [12]. 

In Sec. II we review the basic scenario for the evolution of the axion field around 

the QCD epoch. In Sec. III, after deriving the equations of motions in a suitable form, 

we present the results of (3 + l)-dimensional numerical calculations of an initial white- 

noise axion distribution. We find that the non-linear potential leads to the formation 

of dense, roughly spherical, soliton-like axion configurations we call axitons. We then 

follow the subsequent evolution of these spherically symmetric configurations in a (1+ l)- 

dimensional calculation. Sec. IV is devoted to the consideration of an initial axion field 

that results in a network of topological defects. We discuss how the usual picture of 

axion strings slicing up axion domain walls is modified by the inclusion of the non- 

linearities of the true axion potentia,l. We find that rather than the simple picture 

of axion strings destroying walls by punching holes in them, unstable pseudo-breather 

solitons are formed which decay to axitons. In the final section we discuss some possible 

physical consequences of very dense axion clumps. 
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II. COSMOLOGICAL EVOLUTION OF THE AXION FIELD 

The axion story begins with PQ symmetry hrealting. This symmetry breaking occurs 

when a complex scalar field 4 with non-zero PQ charge develops a vacuum expectation 

value. This PQ symmetry breaking can be modeled by considering a potential of the 

standard form V(G) = X (I$\* - f,2/2)*. Th e axion is the resulting Nambu-Goldstone 

degree of freedom from spontaneous breaking of the global symmetry. After PQ sym- 

metry breaking at T - fO, but before QCD effects are important, the axion is massless. 

However since the PQ symmetry is anomalous, it is broken explicitly by QCD instanton 

effects, leading to a mass for the axion. In general the instanton effects respect a residual 

2~ symmetry, and the axion develops a potential due to instanton effects of the form 

V(a) = m;(fJN)*(l - cos(ilia/f,)]. Th e axion field is often represented in terms of an 

angular variable 6’ E .Na/f,, and if 0 is taken as the dynamical variable, its potential for 

N=lis 

V(B) = m;(qf,2(1- COSO) E A”,(T)(l - cos8). (2.1) 

Because QCD instantons are large, with a size set by A&n, their effects are strongly 

suppressed at high temperatures. So for T >> Aocn, the axions are effectively massless. 

For T >> &on, the temperature dependence of the axion mass scales as 

mp) = mZ(T*)(T/T.)-“; n, = 7.4 f 0.2. (2.2) 

When the field 6’(z) is created during the Peccei-Quinn symmetry breaking phase 

transition at 2’ - ja, it should be uncorrelated on scales larger than the Hubble radius 

at that time [13]. As the temperature decreases and the Hubble radius grows (in a 

radiation-dominated Universe the Hubble radius grows as R”(T) E H-‘(T) K TV*), the 

field becomes smooth on scales up to the Hubble radius. This continues until T = TI N 1 

GeV when the axion mass “switches on,” i.e., when m.(Ti) N 3H(Ti), and the axion 
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mass begins to become important in the equations of motion. Coherent axion oscillations 

then transform fluctuations in the initial amplitude of the axion field into fluctuations in 

the axion density. 

Since the initial amplitude of the coherent axion oscillations on the scale of the Hub- 

ble radius is uncorrelated, one expects that typical positive density fluctuations on this 

scale will satisfy p.. x 2p,, where Pa is mean cosmological density of axions [9]. At 

the temperature of equal matter and radiation energy density, Tsq = 5.5 R,h*eV [14], 

non-linear fluctuations will separate out as miniclusters with p~c zz 10-14gcm-3 [9]. 

The minicluster mass will be of the order of the axion mass within the Hubble radius 

at temperature Tr , MMC N 10m9 I&. The radius of the cluster is RMC - 1013cm, and 

the gravitational binding energy will result in an escape velocity of ue/c - lo-*. Note 

that the mean phase-space density of axions in such a gravitational well is enormous: 

fi - pam;4v;3 - 104*fit2, where frs = fn/10L2 GeV. 

We will show below that due to non-linear effects, a substantial number of regions 

at AQCD > T > TEQ can have an axion density orders of magnitude larger than 2&. 

These form because the non-linear effects in the axion potential lead to the formation of 

pseudo-soliton objects we call axitons. 

The axitons are not true solitons because the field coherently oscillates inside the 

axiton. The oscillations of the field lead to a red-shift of the energy density of the field 

in an expanding Universe. Quantitatively, axitons resemble breathers of the (1 + l)- 

dimensional sine-Gordon model. 

Eventually the energy density of the axiton is red-shifted to sufficiently small values 

of the axion field so that non-lineraities can be neglected, and the axiton configuration 

is frozen in the cosmological expansion as is any linear fluctuation. However the energy 

contrast relative to the homogeneous background will be large. 

Once an axiton forms, its energy density scales as T3 for T > TEQ, so we can write 
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Paxiton E 3(1 + @)TEQ~/~, where 9 depends upon the initial conditions of the axion 

field, i.e., the misalignment angle and its gradients at Tl. Here, s is the entropy density, 

and @ = 0 corresponds to the mean axion density. The energy density inside a given 

fluctuation is equal to the radiation energy density at T = (1-t @)T*Q, At that time the 

self gravity of the fluctuation comes to dominate, and if @ 2 1 it separates out from the 

cosmological expansion, collapses, and, forms a minicluster with density’ 

PMC = 140G3(l + @)&(TEQ) = 3 x lo-14@‘3(l + @) (fl,h2)4g Ct,l13, 

Even a relatively small increase in @ is important because the final density depends upon 

rp4. 

Ours is not the first proposal that non-linear effects can lead to large values of @. 

One mechanism whereby non-linear effects can lead to amplification of the axion density 

was recognized in Ref. [8]. In that analysis it was proposed that some correlation regions 

can have values of Q larger than one because the closer the initial value of ~9 is to the top 

of the axion potential, the later axion oscillations commence. However, this effect alone 

is not very significant. If the closeness of the initial angle to the top of the potential 

is parameterized by E E (r - 8;)/n, tl ien for < in the range 0.1 5 5 5 10m3, @ - 1 x 

1.5(4/7r)y3~35, and @ is significantly larger than 1 only for initial values very finely 

tuned to the top of the potential [ll]. Moreover, the axion field is not exactly coherent 

on scales of the Hubble radius, and even small fluctuations will spoil this simple picture. 

Our scenario for the generation of axion miniclusters mainly depends upon the in- 

terplay of the non-linear effects in the potential and gradients in the axion field. The 

interplay of these two effects will lead to the formation of axiton configurations in the 

axion field. At temperatures T > T,, the potential is negligible in the equations of mo- 

tion compared to the gradient terms which force the field to be homogeneous on scales 

‘The factor of 140 results from a detailed calculation 
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less than the Hubble radius. i\t T < A oeo, gradients can be neglected and one can 

treat the evolution of fluctuations as that of a pressureless gas. Clearly, around the QCD 

epoch when the potential just starts to become important in the equations of motion 

the gradient terms are still important, and since the initial amplitude can be close to 

?r, the non-linear nature of the potential is also important. In order to find the energy 

density profile at freeze out one has to trace the non-linear inhomogeneous field evolution 

through the epoch T N ‘Ti 

III. INHOMOGENEOUS AXION FIELD EVOLUTION 

A. Equations of Motion 

We start with deriving the equations of motion for the axion field in a form suitable 

for numerical calculations. In an expanding, spatially flat Universe with scale factor R(t), 

the equation of motion for the axion field tales the familiar form 

lj+3&4- 1 -2 

R ---A 8 + m:(t) sin H = 0, 
R*(t) 

where dot denotes time derivative and il is the Laplacian with respect to comoving 

coordinates 2. 

Rather than cosmological time, it is convenient to work with a conformal-time co- 

ordinate. In a radiation-dominated Universe the conformal time is proportional to the 

scale factor R. Using R as the independent variable, the equation of motion is 

+ &m:(R) sin0 = 0. 

Using the Friedmann equation, along with the dependence of the expansion rate upon 

R in a radiation-dominated Universe, we can express A2 in terms of the Hubble radius 
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at some arbitrary epoch (denoted by subscript 1): I?’ = H’R’ = H’(R,)Rj/R*. Yaw 

defining conformal time 1) as ‘1 s R/R,, the equation of motion is 

1 2 

H2(R,)R; 
A’s + H2yR,) mz(R)sin% = 0, (3.3) 

where prime denotes d/dq. We use Eq. (2.2) to find that in conformal time the mass 

evolves as m:(R) = rni(R1)~1”. We can use the remaining freedom in the choice of RI 

to simplify the equation of motion by making the choice mz(R,) = H2(R1), i.e., q = 1 

corresponds to the epoch when the inverse of the axion mass is equal to the Hubble 

radius. The equation of motion then tales the form 

8” + :%’ - A*% + f+’ sin % = 0, (3.4) 

where A is now the Laplacian with respect to comoving coordinates, cc E H(R1)R1f. 

In other words, cz = 1 corresponds to the Hubble radius at the epoch when the Hubble 

radius is the inverse of the axion mass. 

The equation of motion can be written as a wave equation by the introduction of the 

field ?I, = ~8: 

4 - A*$ + q”+ssin($~,/rl) = 0 (3.5) 

The equation of motion is finally in a form convenient for the study of the evolution 

of the axion field during the epoch when the mass switches on. In Table I we give the 

scaling with 7) of several itnportant physical length and mass scales. We next turn to the 

specification of the initial conditions. 

B. Initial Conditions 

At 7 < 1 the potential term in Eq. (3.5) can be neglected, and the solution of 

the wave equation can be expressed sitnply as a sum of Fourier harmonics. As usual, 

there will be two sums over frequency w: one sum proportional to sin(wn) and one sum 
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Table I: The scaling of physical quantities with conformal time 7. To find the scaling in coordinate 
distance, a length must be divided by q, and a m.lss multiplied by 7. 

TIME t(7) = t(7 = lb? 
TEMPERATURE T(q) = T(F) = l)q-’ 

SCALE FACTOR R(v) = WV = 117 
AXION MASS ma(q) = m,(q = l)q”/’ n = 7.4 * 0.2 

HUBBLE RADIUS RfJ(q) c H-‘(q) = IxH(7j = l)$ 

proportional to cos(q). In the decomposition of the 0 field, terms like A(w) sin(q)/(q) 

and B(w) cos(q)/(wq) will appear. Assuming a finite amplitude for fluctuations of 

6’ (of order of several r) on scales larger than the Hubble radius at the epoch of the 

Peccei-Quinn phase transition, we see that the coefficients B(w) must be proportional 

to A~cn/f~, while the coefficients A(w) are of order unity. In other words the terms 

proportional to cos(wq) correspond to decaying modes on scales larger than the Hubble 

radius and can be neglected. Finally, assuming that on large scales the distribution for 

0 is white noise, we obtain 

e = An c sin(v) 

ijk w7 
=n(piz + Wlijk) Sin(pj?/ + $Z*ijl;) sin(pkz + wsijk) , 

where y’s are random phases and w2 = pf + pf + pz. On scales larger than the Hubble 

radius the field distribution is frozen, while modes smaller than the Hubble radius are 

redshifted away. 

We numerically evolved this distribution starting from initial time 7 = 0.4 in a box 

of size L = 4 with periodic boundary conditions. There were 1003 grid points in the box. 

Each of the momenta in the field decomposition took six discrete values, p,, = 29771/L, 

with 1~ = 1, . . . . 6. So, in total there were 3 x G3 random phases, each with values in the 

interval 0 < ~+3 < 27r. 

The final parameter to be chosen is the magnitude of A. Recall that for N = 1, the 

axion potential is periodic with period 27r. We will consider two possibilities: A = 1 and 
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A = 2. For the case A = 1 it is unlikely that, domain walls will form in a box of the 

size we study. However for A = 2 (the more physical choice) domain walls are produced 

at about 1 per horizon. We will present some results where A = 2, but for the most 

part we will consider in det,ail calculations with the A = 1 initial condition, since we are 

interested in the structure of density enhancements that are not associated with axion 

domain walls. So unless otherwise specified, our results will be for A = 1. 

The initial conditions are illustrated in Fig. 1 by a 2-dimensional slice through the 

3-dimensional box. The height above the plane is proportional to the axion energy 

density. Since at this epoch the axions are relativistic, it is convenient to scale their 

energy density by $. The energy density shown in Fig. 1 is scaled by $/&,(v = 3) where 

&(q) represents mean axion energy density at a given 17. Note that the Hubble radius at 

this epoch (7 = 0.4) is 0.4 in the units of the figure, and the inverse of the axion mass is 

75 units. 

C. Results of Numerical Calculations 

1. (3 + l)-dimensional evolution 

We first present the results of numerical calculations with A = 1, where density peaks 

arising from collapsing domain walls are filtered out so as to isolate the effects due to 

axitons. In order to present the results of the calculations we will take a two-dimensional 

slice through the three-dimensional box, and plot the energy density as the height above 

the plane. We have analyzed the time evolution of the energy density in several different 

slices. All of the slices generally look alike. The most important (and generic) feature is 

the development of large-amplitude peaks. As the system evolves in time, the peaks in 

the energy density, the axitons, increase in magnitude and become more compact. We 

present the results in the z = const plane, which intersects the point with the maximum 

energy density. We emphasize that all slices through the box are quantitatively similar. 
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We normalize the energy-density by comp.aring it to the energy density of a homogeneous 

axion field, &(?I), with initial amplitude equa~l to the r-ms value of t,he misalignment angle, 

R v-VI.9 = x/v% 

In order to isolate the effect of the non-linearities in the axion potential, we also evolve 

the same initial conditions wit,h a harmonic axion potential, V(e) = m2(T)fZ8*/2, and 

compare the evolution of the harmonic potential model to t,he axion model. 

The distribution of the axion energy density in the reference plane at time corre- 

sponding to n = 2 is shown in Fig. 2a for the harmonic potential, and in Fig. 2b for 

the axion potential. The maximum energy density peak that picks the reference plane is 

clearly seen in Fig. 2b, its top portion is choped off to fit overall the scale of the figure. 

The distribution of the axion energy density in the reference plane at time corre- 

sponding to n = 3 is shown in Fig. 3a for the harmonic potential, and in Fig. 3b for 

the axion potential. .4gain, the tops of the four peaks in Fig. 3b are chopped off; their 

heights are in excess of lOO! Of course the peaks are only evident for the axion potential 

model. 

Comparing Fig. 3b to Fig. 2b, we see that for the axion potential most of the high 

magnitude peaks grow considerably in height and became thinner, while most of the 

low amplitude peaks remain almost unchanged, i.e., they are in the linear regime and 

consequently are frozen by the cosmological expansion. There are some peaks (some even 

relatively high at n = 2) which decreased in amplitude. Those peaks represent the tales 

of the density clumps which reach their maximum at some other value of z. All high 

density peaks contract in the coordinate volume, those which decreased in height simply 

moved out of our reference plane. High density peaks do not develop in the evolution of 

the harmonic potential, and the evolution proceeds as was assumed in the linear analysis 

[8&J]. 

There is insufficient resolution on this grid to proceed further in time with the axion 
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potential, but the harmonic potent.ial can be evolved further. In Fig. 4 we present the 

result of the distribution of the axion energy density in the reference plane at time 

corresponding to n = 4 for the harmonic potential to demonstrate that as expected the 

evolution of the field in the linear regime is frozen by n = 3. Note that the typical 

magnitude of the peaks is about 2 for the harmonic potential. 

There is a simple, heuristic explanation for the fact that non-linear effects lead to 

the formation of high density peaks. The average pressure over a period of homogeneous 

axion oscillations in the axion potential potential is negative,2 and is equal to (P) N 

-A;2(T)C?~/G4, where Be is the amplitude of the oscillations [It?] (this formula is valid for 

BQ << ?r; as %Q + ?r. the field spends more and more time near the top of the potential, 

and (P) -+ -2A:). In other words, the axion self-interaction is attractive. The larger 

the amplitude of oscillations inside the fluctuation, the more negative the pressure inside, 

and consequently, fluctuations with excess axions will contract in the comoving volume. 

In addition. matter with a smaller pressure suffers less redshift in cosmological expansion. 

Before continuing our exploration of the evolution of the peaks by means of a l- 

dimensional calculation, we present some results of calculations with A = 2, where do- 

main walls are much more likely to form than the above calculation with A = 1. The 

best way to illustrate the presence of domain walls is by a contour graph, where the 

shading represents the amplitude of the axion energy density. We show a graph of the 

energy density distributions for the axion potential at time 17 = 2 with iz = 2 in Fig. 5a 

and compare it to a similar contour graph for .4 = 1 at 17 = 3 in Fig. 5b. In Fig. 5a two 

shells of collapsing domain walls are clea,rly visible in the lower left hand corner and in 

the upper right hand corner. Such configurations do not appear in Fig. 5b. The density 

peaks in Fig. 3b, the axitons, are not related to axion domain walls. 

‘Of course the average pressure is dominated by relativistic species at this time. It is the pressure 
contributed by the axions that is negative. 
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In order to learn t,he fate of the high density peaks, we have choosen one of them 

in Fig. 3 and generated the corresponding spherically symmetric initial conditions at 

n = 0.4 and evolved it in time. We now describe the result of this calculation. 

2. (1 + l)-dimensional euolution 

The axiton we choose to examine is the one near the center of the grid of Fig. 3, with 

grid coordinates {2.24,1.92} (the grid coordinate of the plane of Fig. 3 in the z-direction 

is 1.76-also near the center of the 3-dimensional box-and the axiton we chose is almost 

at its maximum in this plane, having an absolute maximum at z = 1.80). 

The dependence of the axion field upon time at the reference point at the center of 

this peak in our (3 + 1).dimensional numerical calculation is shown in Fig. 6 by the solid 

curve. We can compare this evolution to the evolution of a massless axion field with the 

same initial conditions since we are able to calculate its evolution anaytically from the 

massless wave equation with initial conditions given by Eq. (3.6). The evolution of a 

massless field at the reference point is shown in the Fig. 6 by the dashed line. 

It is then straightforward to construct a spherically symmetric solution to the mass- 

less counterpart of Eq. (3.5) which has exactly the same time dependence as Fig. 6 in the 

center of the configuration. We start with the field decomposition, Eq. (3.6), substitute 

the values of the coordinates of the given spatial point, and multiply each time harmonic 

by sin(wr)/wr. So the dashed line in Fig. G also represents the time dependence for a 

massless field at the reference point of the (3 + 1).dimensional calculation and also at 

the center of a (1 + 1).dimensional spherically symmetric configuration. (Away from the 

reference point even the massless field will evolve differently in the (1 + l)-dimensional cal- 

culation and the (3 + I)-dimensional calculation.) We can use the resulting configuration 

0 = Q(q, r) for generating spherically symmetric initial conditions which will approximate 

the peak of our choice for the runs with the actual axion potential. The result of such a 
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calculation with A = 1 is shown in Fig. 6 by the dotted line. 

This plot is instructive in the evaluation of the accuracy of the numerical code. At 

n s 1 the axion field is approximately massless, and the dotted curve is indistingushable 

from the dashed curve (there were lo4 grid points in r-direction in the case of spherical 

symmetry) and the solid curve deviates only very slightly (near the extrema) from the 

dashed curve. This suggests that the use of 100 grid points in each spatial direction in 

the (3 + 1).dimensional calculations is adequate 

From Fig. 6, we see that the avion mass effectively switches on at a time n - 1.3. By 

this time the amplitude of the massless field is greater than unity.3 This means that for 

the evolution of the field using the axion potential the oscillations start in the non-linear 

regime B 2 1 in the region that will develop into a axiton. We see also that the non- 

linearity is strong enough to force the density peak to collapse not only in coordinate 

space, but also in physical space as well, since by the time n - 3 the amplitude of axion 

field oscillations are in the non-linear regime and growing (this is somewhat difficult to 

see in the figure). The rate of growth in the non-spherical case is much slower (compare 

the solid and dotted lines). This makes sense because we expect a spherical collapse to 

lead to a denser central region, 

So in general, there are two competing effects in the evolution of the axion field. 

1) A contraction of the axiton due to the pressure difference, leading to an increase in 

amplitude in the center, and 2) a decrease in amplitude of the oscillations due to the 

expansion of the Universe. We found that with a sufficiently large initial amplitude at 

the start of oscillations, the first process wins, and the amplitude in the center of the 

axiton increases to values 8 2 X. In the opposite case, e.g., if the initial amplitude when 

oscillations commence is in the linear regime, the amplitude monotonically decreases in 

3Note that around 7 = 2 the amplitude for the massless calculation is slightly larger than the ampli- 
tude of the calculations using the true axion potential. This is because as the axion mass switches on 
the amplitude of the axion field decreases. 
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time. 

In realistic axion models the axion mass does not continue to grow with 7, but satu- 

rates at its zero-temperature value a,round T - A oco. For axion masses in the allowed 

window this corresponds to 7 2 6. Due to the steep power-law dependence of the func- 

tion m(n) in Eq. (2.2), the period of the field oscillations becomes very small by 7 - 6, 

and direct numerical methods fail even in the case of spherical symmetry. In order to 

follow the evolution of the fluctuation up to freeze out we must, assume that the mass 

saturates at a smaller value of n. This would correspond to a larger value of fO. We have 

approximated the procces of axion mass saturation by the the simple formula 

47) = m?xII = lh”/[I + (d%)“l, (3.7) 

taking nC = 3.5. This value of nC corresponds to too large value off. N 4x 10i3GeV, which 

would give R,,h’ in excess of one. However we expect that qualitatively the evolution of 

the axion field will have the same basic properties for larger values of nC (smaller values 

of fa). 

We can vary the initial overall amplitude A of our spherically symmetric configu- 

rations. This has the effect of spanning different initial conditions of a well defined 

one-parameter family of axitons. Moreover. varing .4 is easier than choosing different 

peaks in Fig. 3. 

The time dependence of the field in the center of the fluctuation that will develop 

into an axiton for A = 0.73 is presented in Fig. 7, and for A = 0.77 in Fig. 8. In 

both cases the configuration collapses and the amplitude of 8 rapidly increases in the 

center, even exceeding the value of ?r. This is followed by a period of several rebounds. 

An expanded view of the rebounds is shown in Fig. 9. During each rebound (eight in 

total in both cases) relativistic asions are emitted. We can see the signature of axion 

emission by looking at the radial profile of an axiton. In Fig. 10 we show the profile of 
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the axiton of Fig. 9 at three instants iu time during one oscillatiou period. The emission 

of relativistic axions is seen in the outgoing waves of Fig. 10. The emission of relativistic 

axions reduces the energy of the central configuration below some critical value, at which 

point a pseudo-soliton, an axiton, is produced. 

The radial coordinate r is the spherical analogy to z. At the values of 17 in Fig. 10 

the axion mass has saturated to rn, = 3.53.7q N 1007. Therefore in the units of Fig. 10, 

the Compton wavelength of the axion is O.Ol~-‘, and the axiton is obviously much larger 

than m,‘-it is indeed a soliton-like configuration. 

The axiton is a quasi-stable (on time scale m,‘) solution of the field equations in an 

expanding Universe. Since there are no absolutely stable spherically symmetric breather- 

like solitons in flat space, in Minkowski space-time an axiton configuration will gradually 

decay anyway without the emission of axions present in the violent oscillations seen in 

Figs. 7 and 8. In an expanding Universe the situation is different. Once the axiton enters 

the linear regime it becomes frozen by the cosmological expansion, and behaves as a 

clump of coherent field oscillations (or ultra-cold axions). 

The final energy density profile of this configuration for the case A = 0.77 is shown 

in Fig. 11. At time 17 = 9 (dotted line), outgoing secondary waves are still seen in the 

tail of the configuration. By time I) = 11 there is no evidence of outgoing radiation. The 

amplitude of the energy density at T = 0 is 23.5 at q = 9 and 12.9 at 7 = 11 (the energy 

density in this graph is not normalized to the homogeneous background). It is clear that 

the energy density in the center scales as v-3 (e.g., 23.5/12.9 = (11/9)3), confirming that 

the linear regime has been reached, the fluctuation is frozen, and the number of axions 

per comoving volume is conserved. The energy density of a homogenoeus background at, 

7 = 10 with Q = 3.5 and initial amplitude equal to the ns value of 6’ is 0.85 in the units 

of the figure. Thus, the fluctuation of Fig. 11 has an energy density contrast of 20. 

Not all fluctuations that pass through the non-linear regime contract in physical 
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space. For example. a sample spherical fluctuation for A = 0.70 does not collapse. 

The corresponding energy density profiles of this fluctuation at two moments of time 

are presented in Fig. 12 by the dashed lines. This should be compa,red to the solid 

lines, which are the energy density profiles for a fluctuation with A = 0.73 which does 

undergo collapse. We see that the slope of the energy density in the non-linear tail 

tends to a power law p CK rm3 prior to the collapse. This leads to an increase in field 

amplitude in the center, while due to the overall expansion of the Universe, the amplitude 

~decreases. For A = 0.73, the first process wins for some period of time, see Fig. 7, while for 

A = 0.7 the general expansion dominates, and the amplitude of the oscillations decreases 

monotonically. However, the decrease in amplitude is much slower than it would be with 

the harmonic potential, and the final energy density contrast with qC = 3.5 and A = 0.7 

is 45. 

For comparison we also present in Fig. 12 the energy density profile of the fluctuation 

with A = 0.77 at 7 = 11. Remarkably, it has the same power-law slope, p 0: r-3, despite 

the fact that this profile represents a fluctuation that has undergone “violent oscillations” 

accompanied by axion emission (see Figs. 8, 10 and 11). 

Since the axion interaction is attractive, one ca,n expect that bound states of axions 

can form. One example of such a bound state is the well known “breather” solution in 

the (I+ 1)-dimensional sine-Gordon model. In (3 + 1) dimensions this solution possesses 

planar symmetry and turns out to be unstable with respect to fragmentation (we dicuss 

this further in the next section). If a spherically symmetric counterpart of the “breather” 

would exist in hlinkowski space-time, it would behave in an expanding Universe just as 

the fluctuation shown in Fig. 11. Thus the axiton is related to a spherically symmetric 

breather. 

Suppose we can extrapolate these results to the range of realistic axion models, i.e., 

to larger values of qC corresponding to smaller values of fa. Then we must consider 
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the possibility of producing enormous density contrasts. Indeed, both the increase in 

axion mass and the expansion of the Universe adiabatically decreases the amplitude of 

axion oscillations in the linear regime (or in the homogeneous state), so that at T 5 

Aqen the corresponding background energy density is about p,, N Z’s@, where Tnq N 

5.5C12,h*eV is the temperature of equal radiation and axion energy density. In the case of 

a collapsing non-linear fluctuation, the final field configuration is the output of non-linear 

dynamics. Let Or be the amplitude of field oscillations in the axiton at the time when 

it enters the linear regime at TL = T,/~L. Then the corresponding energy density in the 

fluctuation will be at this time about AiOz. The ratio of the axiton energy density to 

the homogeneous background axion energy densit,y will be 

1-k Q N A:%;rj;/TEQTf (3.8) 

Using the results from Figs. 7 and 8 (8~ - 0.1, and 7s > 6),4 we obtain 1 +CJ x lo4 prior 

to gravitational decoupling of the fluctuations from the cosmological expansion. 

Although this possibility is exciting, a word of caution is necessary. Non-linear dy- 

namics is rather unpredictable, and one can not exclude the possibility that at Q > 6 

all collapsing non-linear fluctuations somehow dissipate, leaving very small 9s. Note also 

that non-spherical configurations can evolve quite differently than the spherical configu- 

rations. 

The range of initial conditions which will lead to monotonic behavior of the amplitude 

in the non-spherical case is expected to be wider. Our point of view is that spectrum of 

energy density contrasts can span the entire range from order 1 up to of order lo4 or even 

larger. However, at this time we have nothing to say in regard to the number density of 

peaks as a function of its amplitude. 

So far we have neglected the presence of other non-linear structures which can be 

“In m~ case, ~lr. will be larger than ‘I~, the value of TJ where the axion mass saturates to its zero- 
temperature value [see Eq. (3.7)], and ‘IL. > B seems a very conservative estimate. 
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formed by the axion field during the QCD epoch, namely asion domain walls and walls 

bounded by strings. We now turn to the question of their fate and their contribution to 

the dark matter distribution. 

IV. AXION BREATHERS 

In general, there are four sources of cosmic axions. The first source is thermal axions 

[18]. The second source. related to the initial misalignment of the axion degree of freedom 

from its true minimum, was discussed in the previous sections. We will refer to this source 

of axion energy density as the misalignment energy density. The third source is the decay 

of cosmic axion strings [19,20]. In Ref. [19], ‘t 1 was found that the energy density resulting 

from this process is two orders of magnitude larger than the misalignment energy density, 

while in the estimate of Ref. [20], t,he energy density from the decay of cosmic strings 

is comparable to the misalignment energy density. At T N T, the decay of strings 

will also produce an inhomogeneous axion field. While we can not describe the initial 

configuration emerging from string decay by the distribution of Eq. (3.6), we expect that 

the attractive non-linear self interaction will also play a role here, and the evolution will 

proceed along the lines described in Sec. III and will result in high density peaks. The 

fourth potential source of axions is related to the collisions and subsequent disappearance 

of axion domain walls. In this section we discuss this last process, 

In most cases a network of vacuum domain walls is a cosmological disaster, since 

they soon come to dominate the energy density of the Universe [21]. Fortunately, in the 

N = 1 axion model domain walls are effectively unstable and this problem is avoided. The 

process by which the domain walls disappear is through collisions of the string network 

with the walls. The usual assumption is that when a string loop (with a wall on the 
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inside) hits a large wall the two pieces of wall annihilate and a vacuum hole is produced 

in the large wall. Since the surface energy of the hole is smaller than the surface energy 

of the wall, the vacuum hole expands and devours the wall. For an infinite domain wall 

there will be roughly one hole in the wall per Hubble radius. so in a couple of Hubble 

times the holes quickly overlap and the wall disappears. Domain walls of finite size 

(size smaller than the Hubble radius) form closed surfaces and shrink by themselves. An 

oversimplified point of view would be that a,11 of the energy released in the disappearance 

of the domain walls is transferred to relativistic axions, which subsequently redshift away 

and would become an insignificant source of axion energy density. 

We shall argue here that the hole in a domain wall formed by a string-loop intersection 

is not vacuum, but rather consists of a bound state of two pieces of domain wall (which 

in the simplified scenario annihilated each other) corresponding to a generalization of 

the “breather” solution of the (1 + 1)-dimensional sine-Gordon model [22]. That is, the 

vacuum wall network is transformed into a breather wall network. The breather wall 

effectively evolves as a dust wall rather than a domain wall, so it represents cold dark 

matter. 

We consider here the axion field in Minkowski space-time with planar symmetry as 

a function of two coordinates, time :cu and one spatial direction, zi. It is convenient to 

introduce the dimensionless variables t E Q, m, and z = zrm,. The relevant breather 

solution to the equation of motion e - B”+ sin 0 = 0 (dot denotes d/dt and prime denotes 

d/dz) has the form [22] 

&(t,*) = 4 arctan [Vzt;[;)L)] , (4.1) 

where 7 E m/v and L s m. One can interpret this solution as a bound state 

of two static domain walls (or kinks), &ink = ztt4 arctan[exp(r)]. The free parameter z1 

of the breather is related to the binding energy. Larger 21 corresponds to larger binding 
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energy of the kinks. In terms of the spatial energy density distribution, the breather 

looks like a domain wall with an effective width L, but unlike the usual static domain 

wall, the field coherently oscillates with period 7 in the breather. When 2r + 0 the period 

tends to infinity, and when u + co the field oscillates with a frequency equal to the axion 

mass. The width of the breather scales in the opposite way with u: as v --t 0 the width 

is m;‘, and the width grows proportional to u at large v. 

When considering wall like structures, it is convenient to introduce a surface stress- 

energy tensor of the wall, Spu = J_“, Tc dz. Wh’l 1 e all the components of T”, in the 

breather solution oscillate with time, the surface energy density is constant: 

So0 = lSf,27nJm, (4.2) 

and Ss, is a diagonal tensor. The spatial components of 9, are oscillating functions. 

However, when considering the macroscopic properties of a wall, the relevant quantities 

are averages over an oscillation period. Upon averaging over an oscillation period (S*,) = 

0, as it must be for a wall of any nature [23]. For the time-averaged surface tension we 

find 

(Sij) = 8f.372, diTL)-&] lYj e S6ij 

As v -+ 0, the stress-energy tensor tends to the vacuum stress tensor, with So, = S, 

where So0 is twice the energy density of a single kink. However, at large n, we have 

so, x 16 Ai /m, 21 and S zz 8 At lm, u3. With increasing ‘u, this tends to the stress- 

energy tensor of a dust shell. So in the expansion of the Universe, the surface density 

of the breather wall has to decrease and u has to grow. Using Eqs. (4.2) and (4.3), we 

obtain as a solution to the planar wall equations of motion [23] 

SO,(R) = 32f$lR* ( 
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where we assumed constant ‘~1, and have have normalized the scale factor in such a 

way that R = 1 at the moment when u = 0. Note that the number of axions per 

unit area is conserved at large R. Despite the fact that the breather is a bound state, 

its surface energy density decreases in expansion, exactly as the energy density of the 

solution presented in Fig. 11. 

We can visualize the formation of the breather network in the following scenario. 

When domain walls form at T - 7’1, every string loop develops a wall inside (an “an- 

tiloop” develops a wall outside). When a string hits a large segment of wall, the in- 

tersection region will not he empty, but will be a bound state of two domain walls. In 

the idealized approximation of planar symmetry, the bound state will correspond to the 

breather solution of Eq. (4.1). However, since the perfectly planar situation is unrealistic, 

the question arises whether breather walls are stable. 

To answer this question we numerically integrated the axion equations of motion in 

Minkowsi space-time with initial conditions corresponding to a perturbed breather wall. 

We evolved an axisymmetric configuration 0 = O(t,z,r), which initially corresponded 

to the breather field distribution of Eq. (4.1) with u = u(r). The value of vu, and the 

corresponding pressure, was larger in the center (note that Eq. (4.3) corresponds to a 

system with negative pressure). In a sense, this configuration coresponds to a bubble of 

new phase of lower energy density, and it is expected to expand. The question is whether 

the field inside the “bubble” will tend to a breather solution with a new constant value of 

v as the boundary of the bubble propagates outward. We have found that this does not 

occur: the breather wall is unstable. However, the energy density in the breather does 

not dissipate, but the breather fragments into clumps very similar to those discussed in 

Sec. 1II.C. This result is not unexpected in view of the attractive nature of the axion 

self-interaction. The energy density profile in the r-direction is presented in Fig. 13 at 

several moments of time. 
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Our conclusion in this se&on is t,hat the decay of the axion domain wall network can 

provide yet another channel for axiton production in the axion distribution. 

V. DISCUSSION 

In principle, all axion miniclusters could be relevant to laboratory axion search ex- 

periments, since even for Q as small as 1, the density is 10” times larger than the local 

galactic halo density [see Eq. (2.3)]. Moreover, as we have noted already, the energy 

density in an axiton after it separates out from the general expansion will be W’ times 

larger than the energy density at TEQ. For example, a rather moderate density contrast 

of @ = 30 at &co > T > T EQ will correspond to roughly an additional factor of lo6 in 

the energy density of the axiton at T < TEE. 

The probability of a direct encounter with a minicluster is small, Let’s assume that 

all of the axions end up in miniclusters of mass lO-‘A&, density 10-14g cmM3, and radius 

4 x 1012cm. Using a local halo mass density of 5 x 10ez5g crne3 would give a minicluster 

number density of 7,000,OOO PC-~. With a, typical velocity of 250 km s-l the encounter 

rate would be 1 per 25 million years. .ilthough the signal in an axion detector from a 

close encounter with a minicluster would be enormous, it might be a long wait. So the 

interesting question arises, could there be any other astrophysical consequences of very 

dense axion clumps? Below we shall discuss the possibility of “Bose star” formation in 

axion miniclusters. 

The physical radius of an axiton at T EQ is larger by many orders of magnitude than the 

de Broglie wavelength of an asion in the corresponding gravitational well. Consequently, 

the gravitational collapse of the axion clump and subsequent virialization can be described 

in the usual terms of cold dark matter particles. In a few crossing times some equilibrium 
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distribution (presumably close to an isothermal distribution) of axions in phase space 

will be established. It is remarkable that in spite of the apparent smallness of axion 

quartic self-couplings, IX,] = (fr/fa)4 - 10-53fi4, the subsequent relaxation in an axion 

minicluster due to 2~ + 2a scattering can be significant as a consequence of the huge 

mean phase-space density of axions [12]. In the case of Bose-Einstein statistics the 

inverse relaxation time is (1 + fi) times the classical expression, or rii - 71 ~Crp~/rn~, 

where 0 is the corresponding cross section. For particles bound in a gravitational well, 

it is convenient to rewrite this expression in the form [12] 

Then shallower the gravitational well for a given density of axions, the larger the mean 

phase space density, and consequently the smaller the relaxation time due to the vi 

dependence in Eq. (5.1). Note also the dependence of the inverse relaxation time upon 

the square of the particle density. 

The relaxation time (5.1) is smaller then the present age of the Universe if the energy 

density in the minicluster satisfies 

PlO > 1@-bqhi, (5.2) 

where pi0 E p/(lOeV)” and u-s G v,/lO-*. If this occurs, then an even denser core 

in the center of the axion cloud should start to form. An analogous process is the so- 

called gravithermal instability caused by gravitational scattering. This was studied in 

detail for star clusters, where the “particles” obey classical Maxwell-Boltzmann statistics. 

Axions will obey Bose-Einstein statistics, with equilibrium phase-space density n(p) = 

~z~~~d+[e~~- I]-‘, containing a sum of two contributions, a Bose condensate and a thermal 

distribution. The maximum energy density that non-condensed axions can saturate is 

&her - m~?$, which corresponds to ?&her - 1. Consequently, given the initial condition 

ii > 1, one expects that eventually the number of particles in the condensate will be 
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comparable to the total number of particles in t,he region if relaxation is efficient. Under 

the influence of self gravity, a Bose star [lG, 24, 251 then forms [12]. One can consider a 

Bose star as coherent axion field in a gravitational well, generally with non-zero angular 

momentum [lS]. 

Comparing Eqs. (2.3) and (5.2), we conclude that the relaxation time is smaller than 

the present age of the Universe and conditions for Bose star formation can be reached in 

miniclusters with a density contrast @ 2 30 at the QCD epoch. 

Under appropriate conditions stimulated decays of axions to two photons in a dense 

axion Bose star are possible 116, 261 (see also [27]), which can lead to the formation of 

unique radio sources-axionic masers. In view of the results of this paper we conclude 

that the questions of axion Bose star formation, structure, and possible astrophysical 

signatures deserve detailed study. 

In conclusion, we have presented a 3-dimensional numerical study of the evolution of 

inhomogeneities in the axion field around the QCD epoch, including for the first time 

important non-linear effects. We found that the non-linear effects of the attractive self- 

interaction can lead to a much larger density of axions in miniclusters than previously 

estimated. Large amplitude density contrasts form solitons we call axitons, and resemble 

the bound-state “breather” solutions of the (1 + 1)-d. rmensional sine-Gordon model. The 

increase in the axion density may be sufficiently large that axion miniclusters formed by 

the fluctuations might exceed the critical density necessary for them to relax to form 

Bose stars. 
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